
www.scala-lang.org
groups.google.com.au/group/scala-melb

The State of Scala 2010

Ben Hutchison
Senior Developer, REA Group

Coordinator, Melbourne Scala User Group

http://www.scala-lang.org/
http://groups.google.com.au/group/scala-melb

www.scala-lang.org
groups.google.com.au/group/scala-melb

Scala in 1 slide...
• A modern, statically-typed programming language

– Targets the Java Virtual Machine (JVM)
– Deeply Java-compatible

• “Object-Functional “
– attempt to unify Object-oriented & Functional programming
– Concise (really!) and elegant
– Strong type-safety
– Quite a learning curve

• Created in 2004 by Martin Odersky at Swiss University EPFL
• Open source. Academic funding. Trying to break into

commercial mainstream

http://www.scala-lang.org/
http://groups.google.com.au/group/scala-melb

www.scala-lang.org
groups.google.com.au/group/scala-melb

Scala code sample 1: Conveniences

object Example1 {
 val Vic = "Victoria"
 val Nsw = "NSW"
 val Act = "ACT"

 def main(args: Array[String]) {
 val states = Set(Vic, Nsw, Act)

 var stateCapitals = Map(Vic -> "Melbourne", Nsw -> "Sydney")
 stateCapitals += (Act -> "Canberra")

 //output: Set(Melbourne, Sydney, Canberra)
 println(states.map(stateCapitals))
 }
}

http://www.scala-lang.org/
http://groups.google.com.au/group/scala-melb

www.scala-lang.org
groups.google.com.au/group/scala-melb

Scala code sample 2: DSLs in ScalaTest
class StackSpec extends WordSpec with ShouldMatchers {
 "A Stack" when {

 "empty" should {

 val stack = new Stack[Int]

 "be empty" in {
 stack should be ('empty)
 }

 "complain when popped" in {
 evaluating { stack.pop() } should produce [NoSuchElementException]
 }
 }
 }
}

http://www.scala-lang.org/
http://groups.google.com.au/group/scala-melb

www.scala-lang.org
groups.google.com.au/group/scala-melb

Scala code sample 3: Std. Library
package scala.collection
import generic._
import mutable.{Builder, StringBuilder, Buffer, ArrayBuffer,

ListBuffer}

trait TraversableLike[+A, +Repr] extends HasNewBuilder[A, Repr]
 with FilterMonadic[A, Repr]
 with TraversableOnce[A] {
//...

 def filter(p: A => Boolean): Repr = {
 val b = newBuilder
 for (x <- this)
 if (p(x)) b += x
 b.result

 }

}

http://www.scala-lang.org/
http://groups.google.com.au/group/scala-melb

www.scala-lang.org
groups.google.com.au/group/scala-melb

Favorite Features: Java Interop

• Interoperability with Java is near seamless
– Akin to C and C++
– Call and be called by Java code without glue code, wrappers or

recompilation
– Inherit from Java classes
– Identical data model
– Reuse Java tools & skills: Junit, Eclipse, ANT

import org.joda.time._
def datesBetween(start: DateTime, end: DateTime): Seq[DateTime] = {
 for (i <- 0 until Days.daysBetween(start, end).getDays()) yield

 start.plusDays(i)
}
def mkTimeOfDay = new LocalTime(choose(0, 23), choose(0, 59))

http://www.scala-lang.org/
http://groups.google.com.au/group/scala-melb

www.scala-lang.org
groups.google.com.au/group/scala-melb

Favorite Features: Type Inference

• Type Inference:
– Don't: explicitly specify types of variables & functions
– Instead: try to infer it from the context it is used in

• Enables
– Rich semantic structure in code, plus lightweight syntax
– Approaches the consiseness of dynamically typed languages

• Scala uses local not global type inference
– Types inferred at method-level scope, not across whole program
– Method parameter types must still be explicitly specified
– Global type inference for OO languages is a hard, unsolved problem

• OO type systems are inherently “open universes”

http://www.scala-lang.org/
http://groups.google.com.au/group/scala-melb

www.scala-lang.org
groups.google.com.au/group/scala-melb

Minimal Type Info (highlighted in red)

object Example1 {
 val Vic = "Victoria"
 val Nsw = "NSW"
 val Act = "ACT"

 def main(args: Array[String]) {
 val states = Set(Vic, Nsw, Act)

 var stateCapitals = Map(Vic -> "Melbourne", Nsw -> "Sydney")
 stateCapitals += (Act -> "Canberra")

 //output: Set(Melbourne, Sydney, Canberra)
 println(states.map(stateCapitals))
 }
}

http://www.scala-lang.org/
http://groups.google.com.au/group/scala-melb

www.scala-lang.org
groups.google.com.au/group/scala-melb

Favorite Features: Implicit Conversions

• Implicit conversions are Scala's way to retrofit behaviour
onto someone else's code or API
– Java has no good way to do this
– More controlled, fewer side-effects than Ruby-style open classes
– More powerful than C#'s extension methods
– Ubiquitous in Scala code

• Defining an implicit conversion tells the compiler:
– “Here's how convert objects of type A into type B”, where typically
– Type “A” = Someone else's class you wish to extend
– Type “B” = Your extensions to type A

• Importing an implicit conversion into a scope
– Enables “on demand” conversions by compiler when needed

http://www.scala-lang.org/
http://groups.google.com.au/group/scala-melb

www.scala-lang.org
groups.google.com.au/group/scala-melb

Using Implicit Conversions

//a conversion from String to RichString is imported from PreDef by
//default
object ConversionExample {

 def main(args: Array[String]) {
 //output: MyClass
 println(“MyClass.scala”.stripSuffix(“.scala”))

 //what the implicit conversion is doing under the covers
 println(new RichString(“MyClass.scala”).stripSuffix(“.scala”))
 }
}

http://www.scala-lang.org/
http://groups.google.com.au/group/scala-melb

www.scala-lang.org
groups.google.com.au/group/scala-melb

Boxing across the Object/Primitive divide

• Java (the JVM) has two memory representations for data
– Objects: Variable size record stored individually on the heap
– Primitives (aka Value Types, Structs): Fixed size records embedded

within another object, array or stack frame

• We often want to write generic code that works over either
primitive or object types

– Eg A HashMap that can store Int, Double, Char or Object types
– This requires Boxing, an inefficient & slow process whereby primitive

data is copied into & out of object wrappers
– Because Scala encourages abstraction and generic code, boxing has

been a major performance challenge for Scala to date

• Specialization is a new Scala 2.8 feature to address this
problem

http://www.scala-lang.org/
http://groups.google.com.au/group/scala-melb

www.scala-lang.org
groups.google.com.au/group/scala-melb

Specialization: Making Generic Code Efficient

• @specialized: An annotation to ask the Scala compiler to
transparently generate and utilize multiple versions of a
method or class

– One default generic version
– Versions specific to a particular primitive data type, eg Int

• Specialization is probably the first time Scala code runs
faster than equivalent Java code

trait Function1[@specialized(scala.Int, scala.Long, scala.Float,
scala.Double) -T1, @specialized(scala.Unit, scala.Boolean,
scala.Int, scala.Float, scala.Long, scala.Double) +R] extends
AnyRef { self =>
def apply(v1:T1): R
...

}

http://www.scala-lang.org/
http://groups.google.com.au/group/scala-melb

www.scala-lang.org
groups.google.com.au/group/scala-melb

Where is Scala in 2010?
• In transition...

• From:
– “academically interesting” research project
– Popular only among niche of programming elite
– Mainly research & hobby usage

• Aspires to:
– Be a useful, productive language for pragmatic/commercial usage
– Appeal to mainstream developers

http://www.scala-lang.org/
http://groups.google.com.au/group/scala-melb

www.scala-lang.org
groups.google.com.au/group/scala-melb

Where is Scala in 2010?
Commercial uptake & backing is beginning
– Twitter
– LinkedIn
– Seimens
– Grid Gain
– Sony Imageworks
– Électricité de France Trading
– Novell “Pulse” collaboration app
– The Guardian newspaper's “Open Platform” content API

• Scala Job market
– perhaps 100 globally, AFAIK nothing in Melbourne

http://www.scala-lang.org/
http://groups.google.com.au/group/scala-melb

www.scala-lang.org
groups.google.com.au/group/scala-melb

Meet the Team

• Scala dev is dependent upon a small team of people
– No large corporate (Oracle/MS/IBM/Apple/Sun etc) sponsors Scala

• Academic contributors
– Martin Odersky [lead]
– Adriaan Moors [type system & compiler]
– Iulian Dragos, Lucas Rytz, Hubert Plociniczak, Aleksandar Prokopec,

Gilles Dubochet, Philipp Haller, Stéphane Micheloud, Tiark Rompf,
Ingo Maier, Antonio Cunei

• Community/Industry contributors
– Paul Phillips, retired world poker champion [50% of all commits]
– Mark Harrah, Jason Zaugg, Johannes Rudolf, Ismael Juma, Nathan

Bronson, Seth Tissue, Ilya Sergey

• IDEs
– Miles Sabin, Caoyuan Deng, Mirko Stocker, Eugene Vigdorchik, Ilya

Sergey

http://www.scala-lang.org/
http://groups.google.com.au/group/scala-melb

www.scala-lang.org
groups.google.com.au/group/scala-melb

Scala Solutions: Commercial Support

• Founded by Odersky
• On sabbatical from

EPFL
• Consulting
• Training
• Support
• Scala version

migration

http://www.scala-lang.org/
http://groups.google.com.au/group/scala-melb

www.scala-lang.org
groups.google.com.au/group/scala-melb

Scala: A solid history

• Precursors
– Java, ML, Haskell, Funnel

• 2001
– Design begun on Scala

• 2003
– 1.0.0-b2

• 2004
– 1.1.0 1.3.0.9 →

• 2005
– 1.3.0.9 1.4.0.3 →

• 2006
– 1.4.0.4 2.3.1→

• 2007
– 2.3.2 2.6.1→

• 2008
– 2.7.0 2.7.2→

• 2009
– 2.7.3 2.7.7→

• 2010
– 2.8.0, 2.8.1

http://www.scala-lang.org/
http://groups.google.com.au/group/scala-melb

www.scala-lang.org
groups.google.com.au/group/scala-melb

Scala Releases in 2010

• Scala 2.8.0 [August]
– Very protracted, difficult release
– Ran late, ended up taking 18 months to go final
– Major new features and changes. Martin Odersky commented “in

retrospect, this should have been Scala 3.0”
• Collections API refactored
• Named and Default parameters
• Performance optimizations for primitive data types
• Design of Arrays finally “fixed”
• Manifests (“unerased generic types”)

• Scala 2.8.1 [November]
– Stabilization: heaps (~100) tickets closed and bugs fixed
– No new features

http://www.scala-lang.org/
http://groups.google.com.au/group/scala-melb

www.scala-lang.org
groups.google.com.au/group/scala-melb

Simple Build Tool (SBT)

• One of the most popular open source tools yet written in Scala (other
than Scala itself)
– “a simple build tool for Scala projects that aims to do the basics well”
– Created by Mark Harrah
– Becoming the defacto standard for Scala (like Rake, Ant)

• Understands standard Maven layout, src/main/scala,
src/test/scala etc

– Compile and run tests with no configuration

• Scala-based config to declare Maven-style dependencies
import sbt._
class Configuration(info: ProjectInfo) extends DefaultProject(info) {
 val releases = "ScalaTools Releases" at "http://scala-tools.org/repo-releases/"
 val scalatest = "org.scalatest" % "scalatest" % "1.2" % "test" withSources()
 val junit = "junit" % "junit" % "4.4" % "test" withSources()
}

http://www.scala-lang.org/
http://groups.google.com.au/group/scala-melb

www.scala-lang.org
groups.google.com.au/group/scala-melb

ScalaDays 2010

• First official Scala conference held at EPFL, Lausanne,
Switzerland over 2 days
– 32 speakers including an Australian (Tony Sloane, Maquarie Uni)
– Announced: Stanford's Pervasive Parallelism Lab embracing Scala,

entering collaboration with EPFL
– Videos of all sessions freely available

• Preceeded in 2009 by Scala Liftoff
– “Unconference” held in San Francisco

http://www.scala-lang.org/
http://groups.google.com.au/group/scala-melb

www.scala-lang.org
groups.google.com.au/group/scala-melb

Criticisms of Scala

• Scala has its fans but also its critics.
• I hear two recurring themes

– “Scala is too complicated. Its learning curve is too steep”
• Eg Hairy compiler errors “contravariant type T occurs in covariant

position in type (implicit ev: <:<[D,math.dimension.D2Plus])T of
method y “

– “Scala is too academic and theoretical. It includes lots of research
features that are of little use or value in practice”

• Existential Types, Higher-Kinded Types, Type Members

• Yes, but …
• Scala is advanced technology incorporating a lot of ideas

new/unfamiliar to mainstream programming
• Even excellent new ideas take time to accept & appreciated

http://www.scala-lang.org/
http://groups.google.com.au/group/scala-melb

www.scala-lang.org
groups.google.com.au/group/scala-melb

Acceptance of Mathematical Vectors

• Vectors and vector maths are so central to modern maths
– Eg a . b = |a| |b| cos θ

• ..we might forget that they were viewed with distrust and
skepticism less than a century ago

• Eminent physicist & mathematician A.E.Milne wrote Vectorial
Mechanics in 1948. From the preface:

“Professor Sydney Chapman, my former teacher...first expounded to me the
view that vectors were not merely a pretty toy, suitable for elegant
proofs of general theorems, but were a powerful weapon of workday
mathemetical investigation..

I did not at first believe him; I had been brought up in the idea that …
vectors were like a pocket-rule, that needs to be unfolded before it can
be applied an used....”

http://www.scala-lang.org/
http://groups.google.com.au/group/scala-melb

www.scala-lang.org
groups.google.com.au/group/scala-melb

Thank You

http://www.scala-lang.org/
http://groups.google.com.au/group/scala-melb

	Game Developer Conference 07
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

