
www.scala-lang.org
groups.google.com.au/group/scala-melb

Heroscape 2.0

A case study in using Scala for complex
HTML document generation

Ben Hutchison
Senior Developer, REA Group

Coordinator, Melbourne Scala User Group

http://www.scala-lang.org/
http://groups.google.com.au/group/scala-melb

www.scala-lang.org
groups.google.com.au/group/scala-melb

It all started last Christmas...
• ...when I bought my kids a miniatures wargame called

Heroscape
• Fortunately

– They loved it
– While my younger son Felix uses them like dolls for imaginative play,
– my older son Otto wanted to play it using the “proper rules”

• Unfortunately
– Heroscape's game mechanics make for a boring game:

• Meaningless choices
• All games end up the same

– Otto insists on playing it with me anyway

• Game design is a hobby of mine
– So I set out the design my own (hopefully better) Heroscape MkII

http://www.scala-lang.org/
http://groups.google.com.au/group/scala-melb

www.scala-lang.org
groups.google.com.au/group/scala-melb

Heroscape MkII
• The plan

– Retain the Figures and Terrain
– Replace the Unit Cards that specify game mechanics with my own

custom printed cards
– Use a modified version of the turn-based game mechanics I

developed previously for mobile-phone RPG Arcadia

• Thus, a challenge:
– How to (re)generate nice looking units cards displaying photo and

stats for 30+ different unique units/characters

• Technologies considered
– Code-driven OpenOffice document templates
– PDF Generation via IText library
– HTML

http://www.scala-lang.org/
http://groups.google.com.au/group/scala-melb

www.scala-lang.org
groups.google.com.au/group/scala-melb

HTML Document Generation
• Entering familiar territory, except that

– Havent done it from Scala before
– Since cards are printed from screen, no need to ensure cross-browser

compatibility
• Anything supported by Firefox 4.x is on the menu: HTML 5, CSS

3, Mozillla extensions

• Model: Collection of UnitType objects, specifying
– Name, Photo, Life Points, Attack and Defense stats, other abilities

• View: UnitType => HtmlDom
– Scalate templates?
– Custom-built solution: TagTree library

http://www.scala-lang.org/
http://groups.google.com.au/group/scala-melb

www.scala-lang.org
groups.google.com.au/group/scala-melb

Scalate Templating Engine?
• Model Objects + Templates => String

– Multiple template dialects, including
• JSP-like (SSP)
• Haml-like (SCAML)

– developed by “Groovy creator” James Strachan (Scala's “Kim
Philby”?)

– Framework agnostic, use standalone or integrated
– Well documented
– Reliable
– Concise templates
– Imperative execution of template

• “Start at the top and work down the page”

http://www.scala-lang.org/
http://groups.google.com.au/group/scala-melb

www.scala-lang.org
groups.google.com.au/group/scala-melb

Why not Scalate
• Used Scalate for first prototype, but wasn't comfortable

– Template DSL is Yet Another Language to learn & debug
– Unclear semantics when mixing logic into template
– Slow execution because templates must be precompiled

• I wanted a more functional model...
1. Specify how small pieces of the model transform into small pieces of

HTML
2. Compose small pieces into big pieces

• Scala looked appealing
– Easier to define “small pieces” as methods than it is to create another

template file for each piece
– Execution behaviour of Scala well defined and familiar

• No extra language to learn

http://www.scala-lang.org/
http://groups.google.com.au/group/scala-melb

www.scala-lang.org
groups.google.com.au/group/scala-melb

Enter TagTree

• Very simple DSL for creating HTML from Scala code
– Write the view directly in Scala

• Immutable & Side-effect free
– Requires ++ operator to glue sibling tags together

• Tree structured
– Internally represented as scalaz.Tree[NodeInfo]
– Wrapper over that provides HTML-specific behaviours, eg

marginPx(px: Int)
– Pass child nodes up to parent

http://www.scala-lang.org/
http://groups.google.com.au/group/scala-melb

www.scala-lang.org
groups.google.com.au/group/scala-melb

HTML 5 / CSS 3 Goodies
• Vector Graphics via embedded

SVG inside HTML
– Used to draw the circles on the

game cards

• Rounded Corners in CSS
– Each corner can be controlled

individually

• Columns in CSS
– Renderer distributes page

content over columns

http://www.scala-lang.org/
http://groups.google.com.au/group/scala-melb

www.scala-lang.org
groups.google.com.au/group/scala-melb

The Card Layout Problem

• Goal: Cards “look nice”
• Different units have different stats and abilities

– Only some units have Ranged Attacks, which have different strenths
at different ranges

– Wanted units to have arbitrary special abilities, which might have
their own stats

• I'm a classic “lazy programmer”
– Didn't want to hand-customize card layout for different units
– Searched long and hard for a general solution

http://www.scala-lang.org/
http://groups.google.com.au/group/scala-melb

www.scala-lang.org
groups.google.com.au/group/scala-melb

2nd Prototype: Nested tables

• Tabular grid with internal
subdivision

• Assumptions:
– Cards consist of a

Seq[Option[Stat]]
– A Stat is one of several known

cases. Each case knows how to
convert itself into HTML

• Simple numerical stat, eg
life points

• Complex multi-part stat like
ranged attack

http://www.scala-lang.org/
http://groups.google.com.au/group/scala-melb

www.scala-lang.org
groups.google.com.au/group/scala-melb

An aside: Shading leaf table cells

• Prototype 2 yields a table with internal sub-tables
– Though it would “look nice” to shade only the leaf cells of the table
– Creates a mosaic effect

• Wanted a CSS selector that finds leaf table cells
– All TD elements that do not contain a child TD element
– After a long search, concluded it is inexpressible using any form of

CSS at 3.0 level

• Recall that TagTree presents DOM as a Tree[NodeData]
– Can write a tree transform, (Tree[NodeData])=>Tree[NodeData],

that adds a class attribute to every leaf TD cell
– Get some more practice in functional programming along the way
– Isn't that fun!

http://www.scala-lang.org/
http://groups.google.com.au/group/scala-melb

www.scala-lang.org
groups.google.com.au/group/scala-melb

Shading leaf table cells 2

• A tree transformation consists of
– Transform applied to each node of the tree
– An order in which the transform is applied to the nodes

• To identify a TD tag which has no TD children
– We must first have visited the children, so traversal order must be

bottom up
– We must encode the presence of child TD tags into the transform

result as a boolean “isLowest” flag
• Tree[NodeInfo] => Tree[(NodeInfo, Boolean])]

• Afterwards, we're left with Tree[(NodeInfo, Boolean])]
– Need to throw away the now unneeded “isLowest” flag
– Enter unzip: Tree[(A, B)] => (Tree[A], Tree[B])

http://www.scala-lang.org/
http://groups.google.com.au/group/scala-melb

www.scala-lang.org
groups.google.com.au/group/scala-melb

From the Specific to the General...

• Turns out that our bottom-up tree transformation
generalizes to scanr

– def scanr[B](g: (A, Seq[Tree[B]]) => B): Tree[B]
– the r means scan from the right, or end, of the collection

• scanr, and its top-down counterpart scanl, can be viewed as
 “like fold, but accumulates intermediate results”

• with fold being a fundamental traversal or aggregation
operation in functional programming

– def foldLeft[B](z: B)(op: (B, A) => B): B
– def foldRight[B](z: B)(op: (A, B) => B): B
– The function op visits every element of the collection
– Unlike map, the output value of fold, of type B, can have completely

different shape/structure

http://www.scala-lang.org/
http://groups.google.com.au/group/scala-melb

www.scala-lang.org
groups.google.com.au/group/scala-melb

3rd Prototype: Indented Layout

http://www.scala-lang.org/
http://groups.google.com.au/group/scala-melb

www.scala-lang.org
groups.google.com.au/group/scala-melb

3rd Prototype: Indented Layout

• Back to the main story
– Recall that in the prototype 2: “A Stat is one of several known cases.

Each case knows how to convert itself into HTML“

• I wanted yet more generic layout
– Add new stats without worrying about how they will look
– Table subdivision not nestable beyond 3 levels

• Idea: Coerce all stats to a standard but extensible structure
– type StatTree= Tree[(Seq[TagNode], Option[Seq[TagNode]])]

• Label HTML shown green
• Optional value HTML shown blue

– foreach stat define: (stat) => StatTree
– Define one generic render transform: (StatTree) => HTML

http://www.scala-lang.org/
http://groups.google.com.au/group/scala-melb

www.scala-lang.org
groups.google.com.au/group/scala-melb

API Enrichment

• Java interfaces are often, by convention, minimal
– java.util.List: ~ 25 methods
– scala.collection.Seq: ~200 methods
– Root cause: lack of traits in Java

• It is routine to enrich Java APIs in Scala with convenience
methods via implicit conversions

• Example: java.awt.Color enriched by RichColor, adding
– hue, saturation, brightness
– withHue, withSaturation, withBrightness
– brightenPercent, darkenPercent

http://www.scala-lang.org/
http://groups.google.com.au/group/scala-melb

www.scala-lang.org
groups.google.com.au/group/scala-melb

Cofree: What's common to Lists & Trees

• In discussions on the Scalaz list during the project, I
discovered Cofree

– trait Cofree[+F[+_],+A]
– “A stream of some functor F[A]”

• Abstracts out the commonality between Lists and Trees
– They have two ends
– They store a value in each node
– They have a variable branching factor at each node

• Lists have 1 branch at each node
• Binary trees have 2 branches at each node
• HTML trees have N branches at each node

http://www.scala-lang.org/
http://groups.google.com.au/group/scala-melb

www.scala-lang.org
groups.google.com.au/group/scala-melb

Cofree for customized Trees

• I have tried to reuse the scalaz Tree trait in TagTree, but..
– One major problem: scalaz stores a node's children as a

Stream rather than a Seq or Iterable
• Prevents use of other data structures like linked-lists or

immutable Vectors
sealed trait Tree[+A] {
 /** The label at the root of this tree. */
 def rootLabel: A
 /** The child nodes of this tree. */
 def subForest: Stream[Tree[A]]... }
• Cofree[Seq, A] might offer a solution?
• Subtype- vs Parametric- polymorphism?

http://www.scala-lang.org/
http://groups.google.com.au/group/scala-melb

	Game Developer Conference 07
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

